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B O U N D A R Y  L A Y E R  O N  A R O T A T I N G  C Y L I N D E R  I N  A X I A L  F L O W  

G .  u  P e t r o v  UDC 532.526 

A s e m i i n f i n i t e  ho l low c y l i n d e r  of r a d i u s  R i s  r o t a t i n g  about  i t s  own axis  at an a n g u l a r  v e l o c i t y  w, and an  
i n c o m p r e s s i b l e  l iquid  f lows a round  i t  in  u n i f o r m  f low at a v e l o c i t y  tl~. The f low is  a s s u m e d  to be l a m i n a r  and 
a x i s y m m e t r i c a l o  The v a r i a b l e s  

s = [~ ;  ~l = ( r~" - -  R ~ ) / 2 ~ R ~ ;  

'U2 ,~ = ~ l u = ~ R z ;  w = w * h o R ;  p = ( p *  - -  p = ) l p  

a r e  u s e d  to s o l v e d  the  p r o b l e m ,  w h e r e  

(1) 

(2) 

and 7? a r e  ana logous  to the  v a r i a b l e s  p r o p o s e d  in  [2] f o r  the  c a s e  of  a n o n r o t a t i n g  c y l i n d e r ;  ~ i s  the s t r e a m  
func t ion ,  which  i s  de f ined  by  the r e l a t i o n s  u * = ~ r / r  and v* = - r  x i s  the d i s t a n c e  f r o m  the  o r i g i n  of  the 
c y l i n d e r  a long the g e n e r a t i n g  l ine ;  r i s  the d i s t a n c e  to the axis  of the c y l i n d e r ;  u * ,  v* ,  and w* a r e  the l o n g i -  
tud ina l ,  r a d i a l ,  and c i r c u m f e r e n t i a l  c o m p o n e n t s  of the ve loc i t y ;  p* i s  the p r e s s u r e ;  p~ i s  the p r e s s u r e  in  the  
advanc ing  flow; p i s  the d e n s i t y  of  the l iquid;  and v i s  the k i n e m a t i c  modu lus  of v i s c o s i t y .  F r o m  h e r e  on an 
i ndependen t  v a r i a b l e  which a p p e a r s  as  a s u b s c r i p t  de no t e s  d i f f e r e n t i a t i o n  with r e s p e c t  to i t .  The  r e l a t i o n  u * /  
u ~  = u = ~ ?  . is  va l id  fo r  the l ong i tud ina l  v e l o c i t y  c o m p o n e n t .  

In the  d y n a m i c a l  equa t ions ,  t e r m s  of the o r d e r  (REX) -1 = v / u ~ x  a r e  d i s c a r d e d ,  i . e . ,  an a p p r o x i m a t i o n  to 
the  bounda ry  l a y e r  i s  u s e d ,  

2(~r - -  r + ~lP,1 - -  sp~ = s (~nr  ~ - -  %qvnn); 
2(awn), 1 + q w,~ § (~/~)(r - -  ~lq~ + s% - -  2Dw = s (%~w~ - -  %u,,~), 

p ~  = sw~'/~,  ~ = 1 + 2 ~ 1 .  

~3) 

The f low a round  the  e x t e r i o r  s u r f a c e  i s  i n v e s t i g a t e d ,  and the b o u n d a r y  cond i t i ons  a r e  of  the f o r m  

r = (P = 0, W = i whenl] ---- 0; 

q~n=0 ,  w = p = 0  as ~1-+oo.  (4) 

The c a s e  in which the r a t i o  of the t h i c k n e s s  of  the b o u n d a r y  l a y e r  to the r a d i u s  of the  c y l i n d e r  i s  s m a l l ,  
i~  ~ << 1, i s  of s p e c i a l  i n t e r e s t .  A l i m i t i n g  t r a n s i t i o n  i s  p o s s i b l e  in Eqs .  (3) as ~ ~ 0 (or as  /3 -* ~o) 

2 u , ~ ,  + ~ w n  = s ( r  - -  % w n ) ,  p n  = s w  2. (5) 

N o v o s i b i r s k .  T r a n s l a t e d  f r o m  Z h u r n a l  P r i k l a d n o i  Mekhan ik i  i T e k h n i e h e s k o i  F i z i k i ,  No. 4, pp.  65-70 ,  
J u l y - A u g u s t ,  1976. O r i g i n a l  a r t i c l e  s u b m i t t e d  S e p t e m b e r  16, 1975. 
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T A B L E  1 

(1) (i) p(oi,~ i u~] 0 w~ l I] 

0 , 3 3 2 0 6  
0,58i15 

--0.7982 
2,345 

--9,269 
43.01 

--221,7 

--0,332o6 
--0,14422 

O, 2566 
--o,SIJ5 

�9 ~, 284 
--15,36 

79.27 

0 
- -  1 ,0567 

0 ,4173  
- - 0 , 8 8 4 0  

2 ,857  
- - t l  ,44  

5 2 , 4 9  
- - 2 6 5 , 1  

I t  i s  advisab le  in the o the r  ca se  of  sma l l  ro ta t iona l  ve loc i t i e s  (fl <<1) to use  the va r i ab l e s  ~ ins tead  of  s and 
p / f l  ins tead  of p, which allows c a r r y i n g  out the l imi t ing  t r ans i t i on  as f~ --* 0; then the f i r s t  equation of the s y s -  
tem (3) b e c o m e s  independent  and with the boundary  condi t ions  for  go f r o m  (4) def ines  the p r o b l e m  of the axial 
f low around a nonro ta t ing  cy l inde r .  

The p r o b l e m  (3) and (4) allows the solut ion to be r e p r e s e n t e d  in the f o r m  of funct ion power  s e r i e s  a r -  
ranged  in powers  of ~ o r  s .  The p r inc ipa l  pa r t  of the expans ion  in s is de t e rmined  by the Blas ius  funct ion 

re(n) 

q~(O) = (I); w (~ = 1 - -  (1)~; p( t )  = .I (1  - -  ~ ) ~ d ~ l ,  
c~ 

and ~0(~ and w(~ r e p r e s e n t  a solut ion (derived by Howar th  [3]) which does not  take account  of  cen t r i fuga l  
f o r c e s  and the t r a n s v e r s e  c u r v a t u r e  of the s u r f a c e  of the cy l inde r .  The  r e m a i n i n g  t e r m s  depend on the p a r a m e -  
ter  /3, and they a re  ca lcu la ted  out to the sixth o r d e r ,  i nc lus ive ly ,  in the l imi t ing case  of  a thin boundary  l a y e r  
(5). The values of the quant i t ies  which d e t e r m i n e  the longitudinal  and c i r c u m f e r e n t i a l  coef f ic ien t s  of f r i c t ion  
and the p r e s s u r e  on the s u r f a c e  of  the cy l inde r  are  given in Table  10 One can see  that  fo r  values  of  s 5 0.2 
the r e su l t s  f o r  the d i f fe ren t  approx ima t ions  d i s a g r e e ;  t he r e fo re ,  only u(l)(~?) is p r e s e n t e d  h e r e  (dashed-dot  
cu rve  in F ig .  1); i t  is  obvious that  as the ro ta t iona l  ve loc i ty  i n c r e a s e s ,  the longitudinal  ve loci ty  prof i le  i s  f i l led 
out.  This c i r c u m s t a n c e  is explained by the fac t  that  a negat ive  component  of the p r e s s u r e  g rad ien t  in the d i -  
r ec t ion  Ox, which is de t e rmined  by the funct ion p(1)(V), a p p e a r s  in the boundary  l a y e r  (Fig. 2). A s e r i e s  in 
power s  of  ~ is used in [2] to ana lyze  the effect  of t r a n s v e r s e  c u r v a t u r e  in the case  of a nonro ta t ing  cy l inde r .  
The n u m e r i c a l  r e su l t s  obtained with i t s  help a r e  a lso appl icable  only f o r  smal l  values  of  ~ (~ ~ 0.5). 

R e p l a c e m e n t  of the v a r i a b l e s  

t - -  (v:c/(oR3)"-/~; ~ --  (r 2 -  R2)/2tR2; 

=- coR:~t:7'-f; zv* = o R W ;  p *  = p= + 9o)2R~tP 
(6) 

in the case  of  l a r g e  c i r c u m f e r e n t i a l  Reynolds  n u m b e r s  Re w = wR2/v r educes  the defining s y s t e m  of  equat ions  
to the f o r m  

5 ((~/;;): + 3/ / ; ;  --  ]~ -{ 2 (~P; - -  P)  := 2t ( /~ /~ t  - -  . ~ t f ~  -~ Pt);  

5((rWO; -:- 3/W; + (t/(~)(3/ -~- 2t / t  - -  2~/; --  5 I ) W  : 2t(]: lV t - - / t W ; ) ,  

P; ----- We/o,whereo = I + 2t~. 

Such a r e p l a c e m e n t  i s  appl icable  to the s o l u t i o n o f t h e p r o b l e m  of a ro ta t ing  semi inf in i te  cy l inde r  in a 
s t a t i ona ry  liquid, s ince  the veloci ty  of the advancing flow is not  used as a p a r a m e t e r  in it; s a t i s f ac t ion  of  the 
boundary  condi t ions  

s/g = ,r = O, W = i when ~ = O; 
f ;  = I V =  P = 0 as ~ c o  (7) 

is r equ i r ed .  One can s e e k  the so lu t ion in  the f o r m  of a s e r i e s  in powers  of  t when t is smal l .  The p r inc ipa l  
p a r t  of  the expansion is de t e rmined  by the equat ions  

5 / ; ~ - t -  3 f f ; ; - - f ~ q - 2 ( ~ P ; - - P = O ;  (8) 
5 W ~  + 3 J W ;  = 0~' P ;  = W ~. 
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The sys tem (8) together with the boundary conditions (7) was solved numerical ly  by the quasi l inearizat ion 
method [4]. The l inear  boundary-value problems were reduced, just as in the preceding case  of small  s,  to 
the Cauchy problem for  the fundamental solutions, which were integrated by the Runge-Kut t a  method. The r e -  
sults are  presented in Figs.  1 and 2 and are  supplemented by the constants fCC0 = 0.5834, WC0 = - 0 . 3 1 7 8 ,  and 
P0 = -1 .1505;  the index 0 specifies the value on the surface of the cylinder.  The problem of a semiinfinite 
cylinder rotating in a s tat ionary liquid has not been completely solved in this paper.  However, the resul ts  ob- 
tained show that when Re w >>1, a boundary layer ,  whose thickness increases  as x 2/5, is formed in the region of 
the lead ingedge  of the cylinder,  and the profile of the c i rcumferent ia l  velocity differs  insignificantly in shape 
f rom the Blasius  profi le (see Fig. 2), and mainly the longitudinal velocity component (thick curve in Fig. 1), 
whose maximum value inc reases  as x 1/~, occurs  in it. 

Returning to the problem posed initially, one can show that the solution obtained to the problem (8) and 
(7) is applicable here  in the case of large rotational velocities (s ~ o0, ~ = const). The connection of the var i -  
ables (6) to the v a r i a b l e s  (1) adopted ea r l i e r  is realized by the relations 

: s l /Sq;  ~ : s t /Sl;  p == s~,'sP; w = W .  

The failure to sat isfy the condition %? = 1 as T / ~ o  is not significant, since the f lowis  determined mainly by 
the par t  of the boundary layer  next to the wall. It is evident that the maximum value of the longitudinal velocity 
component in any c ross  section of the boundary layer  specified in advance begins to exceed the velocity of the 
advancing flow in the case of a sufficiently large w and increases  indefinitely as o;4/~ upon a fur ther  increase  

BI5 a in the rotational velocity.  The p r e s s u r e  coefficient increases  in absolute value as o~ , i .e. ,  f s t e r  yet. 

The sys tem (3) has a par t icu lar  solution which sat isf ies the boundary conditions (4) but not the condition 
of the uniformity of the advancing flow, 

w---l/Vt +.2~,1 = R l r ;  p - -  - -  fi/[2(l § 2~)1)1 = -- ( ~ 1 2 ) ( R l r ) 2 ;  (9) 

q> = (P~, (I0) 

where q~o is the solution of the problem of the flow around a nonrotating semiinfinite cylinder,  and the relat ions 
(9) define the flow around a semiinfinite rotating cyl inder .  This par t icu lar  solution is asymptotic for ~ --* co 
and fl = const  for  the problem posed here.  Thus the flow at a ra ther  large distance f rom the leading edge can 
be assumed to be the superposit ion of two independent flows: a c i rcumferent ia l  one (9) and a longitudinal one 
(10)o 

The asymptotic behavior of q~0 as ~ ~ ~ was f i rs t  investigated in [5]. The flow s t ress  at the surface 
determined by the solution [5] falls off as (In x) -1, and the velocity profi les  are  monotonic. The lat ter  c i r cum-  
stance in the problem with rotation is explained by the absence of a longitudinal p ressu re  gradient and permits  
drawing the following conclusion. If for  a specified fl a region occurs  in the boundary layer  in which the longi- 
tudinal velocity component exceeds the velocity of the advancing flow, this region is res t r ic ted  in x and the 
longitudinal velocity in it attains its own maximum value. 

A two-level difference scheme with implicit  approximation of der ivat ives  with respect  to s (a s ~- [a(s)-a" 
( s -  As)I /As) and quasi l inearizat ion was set  up for  the numerical  solution of the problem (2) and (4). The 
method of solution for  the sys tem of ordinary l inear  differential equations r ep resen t s  an extension of t h e m e t h -  
od descr ibed in [6] to the case of a sys tem of higher order  (in this ease~ the sixth). 
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The distributions of the longitudinal velocity component are presented in Fig.  1 for  the case of a thin 
boundary layer  (5) in the 0 - 3 2  range of variat ion of So It  is obvious that as the rotational velocity inc reases  
the profi les  are continually filled out, and for  s > 4 the longitudinal velocity in some region inside the boundary 
layer  exceeds the velocity of the advancing flow. The scale f o r  ~ and f ~  is chosen so that one can compare  
the asymptotic velocity profile with the vel)ci ty profile for  s = 32. Although quantitative agreement  is observed 
only in the par t  near  the wall (as should be expected) and the values of the maxima differ by more  than 10%, 
the general  trend and the decrease  in the d isagreement  with a fur ther  increase  in s (the calculation was car r ied  
out to s = 100) indicate that the asymptotic solution at infinitely large rotational velocities was found correc t ly .  
This conclusion conf i rms the resul ts  for  the curcumferent ia l  velocity and the p res su re .  The shapes of the 
profiles of these quantities vary insignificantly w~th a change in s and are  intermediate betweeen the limiting 
profi les  fo r  s = 0 and s - -  ~ s h o ~  in Fig. 2. The thick curve in Fig.  3, ~Qich i l lus t ra tes  the behavior  of the 
derivat ive of the c i rcumferent ia l  velocity on the surface of the cyl inder  at } = 0, deviates f rom the s t ra ight  
line II, which is determined by the constant value - w~0 = 0.332 at s = 0, and asymptotical ly approaches the 
re la t ion-wv0 =0.318- s 1/5, which is i l lustrated by the s traight  line I in the logari thmic grid.  

The dashed-dot  curves  in Fig. 3 define the dependence ~f wv0 on the rotational velocity in a ra ther  dis-  
taut c ro s s  section of the boundary layer  in which one cannot assume the thickness of the boundary layer  to be 
infinitely small;  ~ = 1 cor responds  to the upper curve,  and ~ = 0.2 to the lower curve.  It is obvious that the 
convergence of the solutions of the sys tem (3) to the solution of the sys tem (5) as } - -  0 is uniform (the conver-  
gence is not uniform as fl ~ ~). 

The solid curves ,  which define the dependence of w~? 0 on x for  various rotational velocities,  begin to de-  
viate f rom the limiting curve,  then approach it, and at ~ ~ 5 they prac t ica l ly  merge  with the dashed straight  
lines -W~0= ~/~, indicating thai the relations (9) are actually asymptotic fo r  ~ - -  ~ and fl = coUSto Figure  4, 
in which the convergence  of the profi les  of the c i rcumferent ia l  velocity to the hyperbola w = R / r  fa r  f rom the 
leading edge of the cylinder is shown, gives more  d i rec t  confirmation~ The dashed lines correspond to fi = 100 
and the solid curves ,  to fi _< 10; convergence is observed for  any" ft. 

The p r e s s u r e  distribution along the generating line of the cylinder,  which is presented in Fig. 5, shows 
that it decreases  monotonically; nowhere, however,  does it become less than its own asymptotic value p* = p~ - 
pc02R2/2, which cor responds  to the p re s su re  on the surface of a rotating infinite cylinder.  

The behavior  of the profi les of the longitudinal velocity component in the case of an increase  in s and 
finite values of } is analogous in general  to their  behavior  in the case of a thin boundary layer.  The difference 
lies in the s lower fil.ling out of the profi les  at relat ively low rotational velocit ies.  The resul ts  for p = 0.1 dif- 
fer  b y n o  more  than 1% f rom the resul ts  of the numerica l  solution of the problem for  a nonrotating cyl inder  [7] 
and are  in complete agreement  with the la t ter  resul ts  for  fi = 0.01. In the case of fi >_ 20 there exists a region 
in which the longitudinal velocity component exceeds the velocity of the advancing flow; the boundedness of this 
region with respec t  to x is confirmed by Fig. 6, in ~ l i ch  it is also shown that u attains its own ma>2mum value 
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in the boundary l aye r  at ~ ~ 1. In the case  fl _< 15 the p ro f i l e s  of u a re  monotonic;  the degree  of influence of 
rotation on the longitudinal velocity field can be de te rmined  by the m a x i m u m  value of the d i f ference  in the 
values of the longitudinal veloci t ies  for  a rotat ing and a nonrotat ing cyl inder  at each specif ied c r o s s  sect ion 
of the boundary layer ;  it turns  out that this quantity f i r s t  i n c r e a s e s  (in p ropor t ion  to i ts  d is tance  f r o m  the 
leading edge of the cyl inder) ,  then d e c r e a s e s ,  acquir ing i ts  max imum value at ~ < 1. 
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MOTION OF A SPHERICAL SOLID PARTICLE IN 

FLOW OF A VISCOUS INCOMPRESSIBLE LIQUID 

V .  S~ K u p t s o v  

A NONUNIFORM 

UDC 532.582.7+532.516.5 

The effect  of a pa r t i c le  on the bas ic  flow is  studied, and the equations of motion of the par t ic le  
a r e  fo rmula ted .  The p rob lem is  solved in the Stokes approximat ion ~4th an accuracy  up to the 
cube of the ra t io  Of the rad ius  of the sphe re  to the dis tance f r o m  the cen te r  of the sphe re  to 
pecu l ia r i t i es  in the bas ic  flow. An analogous p r o b l e m  concerning the motion of a sphere  in a 
nonuniform flow of an ideal liquid has been d iscussed  in [1]. We note that the solut ion is knowaa 
in the ca se  of flow around two s phe re s  by a uni form flow of a viscous incompress ib le  liquid [2], 
and we also note the pape r s  [3, 4] on the motion of a smal l  par t ic le  in a cyl indr ica l  tube, 

Let us cons ider  the slow flow (without a par t ic le)  of a viscous incompress ib l e  liquid. Let Yi be a fixed 
coordinate  sys tem;  then the veloci ty and p r e s s u r e  of this flow will sa t i s fy  the equations 

ap ~ 
~ ~ ~ = oy-~, ~ ~ = o, (t) 
j=i ~i "= 

0 the p ro jec t ions  of the veloci ty  vec tor  onto the coordinate  axes Yi; p0 is  the hydrodynamic  where  u i are  p r e s s u r e ;  
u is the dynamic  modulus of viscosi ty;  and i = 1, 2, 3. 

Let us in t roduce a new coordinate  s y s t e m  x i, whose cen te r  has the coord ina tes  qi in the coordinate  s y s -  
tem yio The re la t ion  between the coordinates  is of the fo rm 

Yl : x~ % q~. 
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